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Aeroelastic Response of Nonlinear Wing Sections
Using a Functional Series Technique
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The determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional
wing sections in an incompressible flowfield via indicial functions and Volterra series approach is considered. The
aeroelastic governing equations are based on the inclusion of stiffness and damping nonlinearities in plunging and
pitching and of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pres-
sure pulse. Nonlinear unsteady aeroelastic kernels are obtained, and based on these, time histories of the subcritical
aeroelastic response are determined. Conclusions and results displaying the implications of the considered effects

are supplied.

Nomenclature
dimensionless elastic axis position
measured from the midchord, positive aft
Theodorsen’s function and its real and
imaginary parts, respectively
lift-curve slope
chord length of two-dimensional wing
section, 2b
damping and stiffness coefficients
in plunging and pitching (i = 1,2,3-linear,
quadratic, cubic), respectively
plunging displacement and its
dimensionless counterpart (k/b),
respectively
nth order Volterra kernel in time and its
Laplace transformed counterpart,
respectively
mass moment of inertia per unit wing
span and the dimensionless radius
of gyration (I, /mb*)!'/?, respectively
total lift and moment per unit span
overpressure of the N-wave shock pulse
and its dimensionless counterpart,
(Lyb/mU?Z), respectively
dimensionless aerodynamic lift
and moment, (L,b/mU?2) and
(M,b*/1,U2%), respectively
airfoil mass per unit length and reduced
mass ratio, (m /7 pb?), respectively
peak reflected pressure amplitude and its
dimensionless counterpart (P,,b/mU?2),
respectively
shock pulse length factor
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Sus Xa = static unbalance about the elastic axis
and its dimensionless counterpart S, /mb,
respectively

s, & = Laplace transform variable and Laplace
operator, respectively,s; =ik;; i =/—1

t, T = time variables and dimensionless
counterpart (Ut /b), respectively

1, T, = positive phase duration, measured from the

time of the arrival of the pulse, and its
dimensionless value, respectively

Uy, V = freestream speed and its dimensionless
counterpart (U, /bw, ), respectively

x(1) = time-dependentexternal pulse (traveling
gust and wake blast wave)

y(t) = response in the considered degree
of freedom (pitch « and/or plunge )

o = twist angle about the pitch axis

&y Lo = structural damping ratios in plunging
(cn/2mawy,) and pitching (¢, /21, w,),
respectively

o = air density

¢ (1) = Wagner’s indicial function

w, k = circularand reduced frequencies
(wb/Uy,), respectively

Wy Wy = uncoupled frequencies in plunging
and pitching (K, /m)'/? and (K, /1,)'/?,
respectively

2} = plunging-pitching frequency ratio (w, /w,)

Superscripts

O] = quantities in Laplace transformed space

), ¢Y = derivatives with respect to time ¢

and the dimensionless time 7, respectively

I. Introduction

T is a well-known fact that within the linearized approach of

the aeroelasticity disciplineit is possible to determine the diver-
gence and the flutter instability boundaries and also the linearized
subcritical aeroelastic response to time-dependent external pulses.
On the other hand, the nonlinearapproachof the aeroelasticproblem
can provide important information such as 1) the influence of the
considerednonlinearitieson the subcriticalaeroelasticresponse and
2) whether the aeroelastic instabilities are benign or catastrophic.
In other words, such an approach gives the possibility of determin-
ing in what conditions the flutter speed can be exceeded without
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the occurrence of a catastrophic failure of the wing (in which case
the flutter is benign), as well as the conditions in which undamped
oscillations might appear at velocities below the flutter velocity (in
which case the flutter is catastrophic). In addition, the considered
nonlinearities play a great role on the subcritical aeroelastic re-
sponse of wing sections. Because of the strong implications of var-
ious nonlinearities on the aeroelastic response of highly flexible
lifting surfaces, their related aeroelastic phenomena should be an-
alyzed within a more encompassing context than in the standard
linearized framework. Aircraft wing structures often feature non-
linearities, which affect their aeroelastic behavior and performance
characteristics,and flutter boundaries. For these reasons, in order to
investigate the aeroelastic behavior of lifting surfaces in the vicinity
of the flutter boundary the aeroelastic governing equations need to
include corresponding nonlinear terms.

The advantage of applying a technique based on Volterra’s
series' = and indicial functions®® consists, among others, in the
possibility to investigate the nonlinear aeroelastic systems within a
rigorous theoretical basis. For exhaustive treatments of the Volterra
series concept applied in the structural dynamics, the interested
reader is referred to the recent book by Worden and Tomlinson.’
As alimiting case, based on the first-order Volterrakernel, the study
of the linear aeroelastic stability of the systems can be carried out.
This methodology can encompass the case of an arbitrary number
of degrees of freedom and at the same time is conceptually clearer,
computationally simpler, and can provide more accurate and realis-
tic results as compared to the conventional techniques used in non-
linear aeroelastic systems based on perturbation and multiple-scale
methods. In addition, as shown in this paper, this method features a
faster convergenceas compared to the other methodologies’” More-
over, this method does not experience the limitations, usually char-
acterizing the other techniques such as the Hilbert transform,’~!!
developed to identify nonlinear systems from the first-order fre-
quency response function (FRF) or the phase plane methods that
can describe the motion as just a function of two variables. In con-
trastto methodsthatare suitablemainly to single-degree-of-fredom
systems, the Volterra series approach overcomes the shortcomings
facing the other methods and provides a foundationfor understand-
ing the issue of the exchange of energy between the different mode
frequencies.

Toward the end of determining the nonlinear unsteady aeroelastic
kernels, the harmonicprobingalgorithm,referredto as the method of
growing exponentialsadvanced by Bedrosian and Rice'? and Boyd
etal."’ and the multidimensionalLaplace transform'* will be used.In
addition to the aeroelasticresponse and determination of the flutter
instability boundary, Volterra series considered in conjunction with
this nonlinear aeroelasticmodel can be used to study the conditions
rendering the flutter boundary a benign or a catastrophic one.!>1¢

Moreover, when the closed-loop dynamic response of actively
controlled lifting surface is analyzed, also the feedback control
forces and moments should be included.”=? The Volterra series
approach can be applied toward this control purpose as well.

Volterra’s series approach provides a firm basis for the treatment
of the nonlinear subcritical aeroelastic response, in the sense that it
suppliesan explicitrelationshipbetween the input (any type of time-
dependent external pulses, i.e., blast load, sonic boom, gust loads)
and its response. With the so-called Volterra kernel identification
scheme, the modeling of an aeroelastic system using this approach
becomes feasible. However, this methodology requires determina-
tion for each specific flight conditions of the corresponding nonlin-
ear kernel of the Volterraseries. For this reason, the recentinterestin
the modeling of unsteady nonlinear aerodynamicshas been focused
on the identification of Volterra kernels in the time domain*' =
and in the frequency domain.> A number of fundamental contri-
butions related to Volterra series'?> have been applied, mainly in
electrical engineering.~> The original studies on functional series
by Volterra' have been continued in the works by Volterra himself
and of those by Rugh,® Schetzen,* and Boyd.> These concepts have
been mainly used in the general nonlinearsystem theory. Originally,
the method of Volterra series and Volterra kernel identification was
developed to identify the nonlinear behavior in electrical circuits.
In the aerospace field fundamental contributions were brought by

Silva,2'=2* who has shown that the method is also applicable to

aeroelastic systems (aerodynamic reactions and forced structural
model). These contributions have opened a very promising avenue
toward modeling and approaching nonlinear aeroelastic systems.

The present investigation concerns the aeroelastic response of
two-dimensional nonlinear wing sections exposed to an incom-
pressible flowfield and subjected to an external pressure pulse 2628
Based on Volterra functional series approach,!=> pertinent infor-
mation about the effects of nonlinearities on either the aeroelastic
response in the subcritical flight speed regime and their implication
on the flutter boundary are supplied.

II. Basic Concepts

Because the principle of superpositionis not applicable to nonlin-
ear systems and in orderto accountforthe varioustypes and numbers
of inputs, a combination of transfer functions (TFs) is used. These
TFs are generated using the multidimensional Laplace transform
of the Volterra kernels via a Mathematica® code developed by the
authors.?® Our approach,intendedto address the subcriticalresponse
ofthe nonlinearaeroelasticgoverningequations,is based onits exact
representation as an infinite sum of multidimensional convolution
integrals, the first one (i.e., the linear kernel) being analogous to the
linearindicial aeroelasticfunction. The full nonlinear aeroelasticre-
sponse will be composed of additionalhigher-ordercontributions.In
the frequency domain if the nonlinear function governing a system
is “smooth,” then for small inputs the system must be asymptoti-
cally linear? One of the key issues is to determine, corresponding
to the consideredtype of structural, damping and aerodynamicnon-
linearities, the pertinent Volterra kernels. When active control is
implemented the corresponding kernels should be determined as
well.

III. Theory

In an attemptto make the paperreasonably self-contained,several
elements associated with the indicial functions and Volterra’s series
as applied to aeroelastic system will be supplied.

A. Indicial Theory and Aerodynamic Loads

Using the aerodynamic indicial functions corresponding to the
transient aerodynamic reaction to a step pulse, the aerodynamic
forces and moments induced in any maneuver and flight regime
can be determined. Aerodynamic forces and moments acting on a
rapidly maneuvering aircraft are, in general, nonlinear functions of
the motion variables, their time rate of change, and the history of the
maneuvering *° However, in this study the linear aerodynamic the-
ory is adopted. Once the response of the system to a step change in
one of the disturbing variables (i.e., the indicial response) is known,
the indicial method permits determinationof the response to an arbi-
trary schedule of disturbances. There is a critical value of the flight
speed, referred to as the flutter speed, above which the steady mo-
tion becomes unstable. The behavior of an aeroelastic system in the
vicinity of the flutter instability can be investigated only in a non-
linear framework. In this context the Hopf bifurcation analysis can
provide important information about the aeroelastic behaviorin the
vicinity of the flutter boundary. In the case of supercritical Hopf bi-
furcation, finite amplitude oscillationsin the postflutter speed range
can occur, whereas in the case of the subcritical Hopf bifurcation
oscillations with increasing amplitudes, even if the system operates
before reaching the flutter speed, can emerge !~

We need to mention that within the nonlinear indicial theory*
the response of a nonlinear system to an arbitrary input can be
constructed by integrating a nonlinear functional that involves the
knowledge of the time-dependent input and the kernel response.
Whereas within the linear indicial theory the linear kernel or linear
impulse responsecan be convoluted with the input to predictthe out-
putofalinear system, the nonlinearindicial theory constitutesa gen-
eralization of this concept. It can also be shown that the traditional
Volterra-Wiener theory of nonlinear systems constitutes a subset of
the nonlinear indicial theory. The nonlinearunsteady aerodynamics
valid throughout the subsonic incompressiblecompressible, tran-
sonic, and supersonic flight speed regimes can be used and deter-
mined via the use of nonlinearindicial functionsin conjunctionwith
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the Volterra series approach. Within the linearizedunsteady aerody-
namics of compressible flight speeds, the monographby Leishman®
provides an excellent presentation of the state of the art of the indi-
cial function concept.

B. Volterra Functional Series Theory
As it was shown,>* within Volterra’s series approach the full
response in the time domain y(¢) of the nonlinear systems with

memory can be cast as
00
YO =Y )
k=0

where y, (¢) is expressed as

9] k
() = ///f hk(t_fht_fh"'t_fk)l_[x(ri)dfi ()
—o0 i=1

k times

o))

By achangeof variables,itis possibleto expressEq. (2) in contracted
form as

9] k
yk(f)zf/f/ hk(ﬁﬁ%~~-Tk)l_lx(f—‘fi)d‘fi 3)
0 i=1

k times

It is assumed that x(#) =0 for t <0, implying that the system is
causal.

With this restriction, all of the integralsin the subsequentdiscus-
sions are different from zero over the time range [0, 00). Restricting
the development of Eq. (3) to the first three terms, one obtains

) = fhl(fl)x(f —1)drg
+ f/ hy(ty, T)x(t — 1)x(t — 1) dty d1p

+ //f h3(1’1, T, T3)X(t — Tl)x(t — Tz)x(t — T3)d'[1 dfz dT3

@)

The response of the system can be expressed in the frequency do-
main as well. Volterra series is essentially a polynomial approxi-
mation of the system, extension of Taylor series to systems with
memory, whereas Volterra kernels £, (s;) are a direct extension of
the impulse response concept of the linear system theory to mul-
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tiple dimensions."*~> Consequently, a multidimensional analogue
of the impulse response can be used to characterize a nonlinear
system 224

Having in view that the memory of aeroelastic systems is notinfi-
nite and, at the same time, the time-dependentexternal excitations,
such as impulse, gust, blast, and sonic-boom pressure signatures
are nonpersistent (in the sense that their effect decay as time un-
folds), it is possible to characterize a nonlinear aeroelastic system
via Volterra series. This fact is reflected in the interpretation of
Volterra kernels as higher-order impulse response functions, that
is, h(ty,...,1,) > 0as 1y,..., 7, > 00. We will use the defini-
tion of the nonlinear transfer function (TF) or higher-orderimpulse
response functions, namely,

Hn(slﬂsb"'vsn)://~~~fhn(T17127~~~71n)

x e 1e™22 ... g7t dr, dr, - - - dT, (5)
as well as of their inverted counterparts:
1 n on +i00 o2 +ioco o] +ioo
hn(rlvfb"'fn):(z ) / / /
Tl op — 00 oy —ioco o] —ioco
X H,(s1,82,...,8,)e1 e ...em™ ds ds, - - - ds, 6)

Once Volterra’s kernels are known, the response of the nonlinear
aeroelastic system can fully be identified. As demonstrated in the
Schetzen works,*>*> without loss of generality the kernels will be
taken as symmetric, in the sense of H, (1, $2, ...) = H,(s2, 51, ...),
with a similar relationship being valid for &, as well.

If we focus our attention on the linear system, the Laplace trans-
form & of the first term of Eq. (4) yields the familiar Laplace do-
main expressionY (s) = H(s)X (s), where Y (s), H(s), X (s) are the
Laplace transforms of y(t), h(t), x (), respectively. H (s) is the TF
of the system. It is a well-known fact that for the linear system ei-
ther the first TF or the first kernel in time 4 (7) contain all of the
information about the aeroelastic system. Moreover, if the system
is linear, the external load is uniquely related to the response by a
convolution integral. With the use of functional series, that is, the
Volterra series, this functional representation can be extended to
nonlinear systems. The comparison between the prediction of the
linear aeroelastic responses of the two-dimensional wing section in
incompressible flowfield based on the Volterra series approach [us-
ing Theodorsen’s function C (k)] and on the exact solution based on
convolution integrals [using Wagner’s function ¢ (7)] is presented
in Fig. 1 (m =1 kg; ¢;; =0.1 N/ms™'; k,; = 10*> N/m; C,, =27;

Li R i
0075 Convolution Integral
Linear Response with First
a0s | | \ Volterra Kernel H (o)
i i S
0.025 |\ /’1 /ﬁ.\ _7\\ T
I \ | /\ /\ ]\ -------
o ol EENANAWE NAA
‘ | \ [ ‘\ ] \ \ Vo
1 i Lo~ - -
—0.025 \. | 1\, \\J _h__\./—— --
—0.05 \
I
a0 LT . . ‘ | .
0 2 4 6 8 10
Time [sec]

Fig.1 Aeroelastic response to Dirac delta impulse, as represented in inset. Comparison of response prediction based on the first Volterra kernel and
the exact solution.
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b=1m; p =1.225 kg/m?; U,, =1 m/s). The indiscernible differ-
ence in the two response predictions assesses both the accuracy of
the aeroelastic model and also the power of the methodology that
combines Volterra’s series and the indicial function.

IV. Mathematical Formulation
A. Structural and Damping Nonlinearities

The aeroelasticgoverningequation for one- and two-dimensional
degree-of-freedom (DOF) wing sections that include the nonlinear
stiffness and the damping in plunging and pitching will be ana-
lyzed next. In this sense, a one-DOF wing section featuring purely
plunging motion and a two-DOF wing section featuring inertial and
aerodynamiccouplingin plunging/ and pitching « will be analyzed.
As already mentioned, the unsteady aerodynamic system is consid-
ered linear. A harmonic time-dependentexternal concentrated load
is also included in the analysis. This can be considered to corre-
spond, for example, to an engine mounted on an aircraft wing. As
a characteristic of this approach, the TFs of the system would exist
and would be the same for any excitations,>**=3% such as impulse,
gusts, airblast, or sonic booms (random or deterministic ones). This
is because TFs are independent of the input to the system, being
a characteristic of the system itself. As a reminder, the validity of
this method is based on the use of continuous polynomial-typenon-
linearities. For nonlinear ordinary differential systems there are, in
general, an infinite number of Volterra kernels. In practice, one can
handle only a finite number of terms in the series, which leads to the
problem of truncation accuracy. However, in the work by Wiener®
itis suggested that the first terms of the series might be sufficient to
represent the output of a nonlinear system if the nonlinearities are
not too strong.

The use of the multidimensional Laplace transform as a function
of several variables is a tool useful in stationary nonlinear system
theory. The multivariable convolutions can be represented in terms
of productsof Laplace transforms.Itis well known that the nonlinear
aeroelasticsystems cannotbe describedby a simple TF for two main
reasons: 1) the response contains both the unsteady aerodynamic
loads and the external excitationeffects, and 2) in the nonlinearcase
the superposition principle is not applicable. It is also well known
that any time-dependentexternal excitation, periodic or otherwise,
can be represented to an arbitrary degree of accuracy by a sum of
sinusoidal waves.* In this context, if the external load is expressed
in terms of multiple sinusoidal forms (for example, a traveling gust
load) this is easily expressed in exponential form, that is,

u(t) = Acos(wat) + B cos(wpt)
= (A/D(E™ + ) + (B/2)(e™' + ) @)

where s, =iw, and sp =iwp. For clarity, it is convenient to adopt
this approachforasingle-DOFsystem. These resultshave more gen-
eral bearing and can be extended for systems with multiple DOFs.
In fact, by using the classical approach of the one-dimensional FRF
it is possible to derive an analytical form of the multidimensional
frequency response characteristics of nonlinear systems. The sys-
tems based on one DOF (plunging /) and two DOFs (pitching o
and plunging /) will be considered in the next sections.

B. Plunging Airfoil Motion in an Incompressible Flowfield
The nonlinear equation of an airfoil featuring plunging motion
can be expressed as

mh(t) + Y {ealhOF +klh 1} = L) = L)~ ®)

i=1

where i defines the degree of the considered nonlinearity. In the nu-
merical simulationsi will assume the values 1,2,3, implying linear,
quadratic, and cubic stiffness and damping nonlinearities. In addi-
tion, m is mass parameter and cy;, ky; are the damping and stiffness
parameters associated with the damping and deflection in plung-
ing corresponding for the ith power. In the right-hand-side mem-
ber of these equations, L, (t) denotes the external time-dependent
load acting on the rigid wing. In Eq. (8), the unsteady aerodynamic

lift is represented as a function of the plunging degree of freedom
as

i " 1 "
Ly(t) = —CrapU2, f 9t — )" dvg — 2pCLaULR" (9)

The noncirculatory component present in Eq. (9) is represented in
terms of convolution integral of the indicial Wagner’s function.

To explainhow this methodology works, letus determine, in terms
of Volterra series, how a system responds to a harmonic or periodic
time-dependentload. Let consider a periodic external excitation of
the form

Ly =) X;e (10)

j=1

The information acquired by the response to a harmonically time-
dependent load can be used to obtain the response to any time-
dependent external excitation. In fact, considering the case of a
concentrated load arbitrarily located in the x, y plane of the wing
we have

u(x, y, 1) = As(x — xo, y — yo)e'”" an

where §(-), X, Yo, A, w denote Dirac’s distribution, location of the
load, its amplitude, and excitation frequency, respectively. Once the
TFis determinedits counterpartin the time domain can be computed
via the inverse Laplace transform £~ !:

1 o; + 00
TF(x,y,1) = £ '[TF(x, y, s)] = 2—/ TF(x, y, s)e'" ds
L,

i — 100

(12)

The general procedure to identify the aeroelastic kernels of vari-
ous order (1, n) is to consider a general input in the form provided
in Eq. (10) and to equate, for the generic term of the nth order,
the coefficientsof X| X, - - - X, exp[(s; + 5, + -+ +5,)7]. Asanex-
ample, the first aeroelastic Volterra kernel that describes the linear
system, obtained by neglecting the nonlinear terms in the aeroe-
lastic governing equations, is obtained by considering the input
load as L, () = X,e’"" [which in dimensionlessform is expressedas
I,(t)= (b/mUozo)Xle”’]; the response of the system is postulated
in the form i (t) = H, (s;) X, e*'" 4 higher-order terms. Substituting
h(t) and its derivatives in the governing equation of motion, one
determines the coefficient of X, e’!".

In a linear aeroelastic formulation the system is completely char-
acterized by a TF H,(s;) that contains the aerodynamic term as
follows:

H,(s)) = (khl +ms12 + cnisy

+51pCrybUs Cl—isib/ U]+ +pCpys?b?) ™ (13)

Herein the Theodorsen’s function C, connected with the Wagner’s
indicial function ¢ (7) via the Laplace’s transform as

C(—is) = sf ¢(t)e " dr
0

has been included in the formulation. The terms underscored by
the solid line correspond to the unsteady aerodynamic loads com-
ponent (circulatory term), whereas the dashed line corresponds to
the effect of the added mass. When the aerodynamic loads are ne-
glected and for s =iw, this result coincides with that of the linear
FRF, derived via the conventional modal analysis. The condition
s =iw corresponds to zero initial conditions; the effect of the initial
condition on the nonlinear aeroelastic response can be included via
s=0+iw.

For purely mechanical systems, in the frequency domain the re-
sponse via Volterra series has been carried out by several authors.
In the present study an alternative procedure, based on the multi-
variable kernel transforms techniques, referred to as higher-order
transfer functions (HTFs) is pursued. The two approaches can be
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correlated to each other, and this is shown also in this work. Assum-
ing zero initial condition, the FRFs are obtained from the TFs by
replacing the Laplace transform variable s with j.?®

In the presentnonlinear aeroelasticsystem, toward the estimation
of HTFs that are defined as multidimensional Laplace transform of
Volterra kernels, a sequence of TFs are employed.

By the use of the linear TF H,(s;), the behavior of the linear
system is easily determined. It will be necessary to find a complete
set of Volterra kernel transforms H,(s;, s, ..., s,) for nonlinear
systems, and for this, in practice, we will use a convergent trun-
cated series. Probing the system with a single harmonic yields only
the information about the value of the TFs terms on the diagonal
line of the plane sy, s, in the Laplace transformed space, where
51 =s,. However, to obtain information elsewhere in this space
one should use multifrequency excitations. In the same way the
second-order Volterrakernel can be determined applying a load de-
pending on two different frequenciesexpressedas L, (1) = X e’!" +
X,e”'. In this case we can express the plunging response in the
form

h(t) = Hi(s) X e 4 H\(5:) X5e" + H,(sy, Sl)X%ezm
+ Hy (53, 5,)X56™ + Hy(s), 55) X, X1 752

+ Hy (55, 5) X2 X2 + hoo.t. (14)

Substituting Eq. (14) in Eq. (8) and equating the terms containing
X, X,et1 452 the second-order aeroelastic Volterra kernel in the
Laplace transformed space is obtained as

Hy(s1,52) = —(s1826p2 + ko) Hy (s H (82) Hy (s +52)  (15)
where

Hy(s; +5,) = {khl + (51 4 82)°m 4 ¢y (51 + 52) + (51 + 52)

X pCrabUsCl—i(s; + )b/ U] + %cha(sl + Sz)zbz}il
(16)

is the first-order Volterra kernel in the Laplace transformed space
at the frequency w; + w, [that is obtained from Eq. (13) in which
s is replaced by sy +s,]. The terms H,(sy, s1) and H, (s, $2)
can be determined from Eq. (15) replacing s, with s; and vice
versa, respectively. Following the same steps, applying the load
L,(t)=X e 4+ X,e”" + X;e%', equating the terms in the form
X, X>X5expl(s) + 52 + 53)7], and remembering that

Hi(si + 5+ 53) = {khl + (51452 +83)°m + ¢y (s1 + 52+ 53)
+ (51 + 52+ 53)pCrabUs Cl—i(s1 + 52+ 53)b/Uso]

1
+ 2pb*Cro (s +52+S3)2} a7

the expressions for the third-order Volterra kernel in the Laplace
transformed space results

Hs (51,52, 83) = —2(Hy (53){3H, (s1) H (52) (kns + €13515253)
+2H,(s1, s2)[kna + cpa(sy + 52)s31}
+2{H,(s2) Hy(s3, 51)[kn2 + cpasa(sy + 53)]

— Hy (s) Hy (52, 53)[Kpp + cposi (52 + 53) 1D /[ Hy (51 + 52 + 53)]
(18)

The constants k;, and c,, multiply the whole expression of H,,
and, if the quadratic nonlinear term in the aeroelastic governing
equations is absent, this term vanishes. Herein one of the general
propertiesof Volterra’s seriesis recalled: if all nonlinearterms in the
equation of motion for the system consist of odd powers of x and
v, then the associated Volterra series have no even-order kernels,
and as a result it will possess no even-order TFs. It is also a general
property of systems that all TFs can be expressed in terms of H.
The expressions are functions of the system and can be obtained
by using the harmonic probing algorithm. It clearly appears that the
HTFs, defined from the Volterra series, are independentof the input
to the system.

C. Plunging-Pitching Airfoil Motion in an Incompressible Flowfield

The aeroelasticgoverningsystemof an airfoil featuringplunging-
twisting coupled motion exposed to a harmonic time-dependentex-
ternal excitation is

mh + S,i+ Y (euhi +kigh') = Ly = L, (19)

i=1

S+ Iya + Y (cad + ko) =M, =0 (20)

i=1

Considering the blast load L,(t) as uniformly distributed in the
chordwise direction, no moment contribution M, (t) is introduced
in Eq. (20).

Following the steps adopted for one DOF, applying a load de-
pending on one frequency L, = X", and expressing the plunging
and pitching displacementsin terms of TFs as
h(t) = Xy Hy (s)e"" + XTHy (st s0)e™" + X{H (51, 51, 51)e™"!

2D
a(t) = X Hi (s’ + XTHy (51, 51)e™" + X[ Hy (51, 51, 51)e™"
(22)

the relative kernels and the aeroelasticresponses can be determined.

The aeroelastic governing system including the external exci-
tation (such as blast pressure signatures) can be expressed in the
Laplace transformed space as

— — 2
. . . 2 .
28 + xus2G + 20— sk + (3) E+35,+ —|:s& + 5%
\% \% "
1 . 1, o1,
+s5|\=—ala|D()+ —s (& —aq)+ —sa =1,(s) (23)
2 2 2
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Fig.2 Comparison of the first three aeroelastic kernels for pure plung-
ing motion. Representation for s; =s, =53, thatis, w; =w; =w;.
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11, 1 rr ., 111,,
= _ +|=-- J— +—_—— =0
Mas (& —a) (2 a)rsﬂsa 3 zﬂsa
(24)

Herein (*) =%(-), and consequently é(s):i[é(t)] and a(s) =
Llo(t)], whereas 3, and I, are nonlinear functions of &
and o (and of their derivatives), respectively. Following the
same steps, applying the loads L,(t)=Xe"" 4+ X,e" and
L,(t)=X e 4+ X, e + Xje%', equating the terms in the forms
X X,e01 752" and X, X, X361 727597 the expressions for the
second- and third-order Volterra kernel in the Laplace-transformed
space can be obtained.

D. Generalization to Multiple-DOF Systems

The method shown for one- and two-DOF wing sections can
be extended to systems featuring multiple-DOF systems in general
and to a three-dimensional aircraft wing in particular. The method
of deriving the nth order nonlinear aeroelastic TFs is based on the
fact that when the aeroelastic system described by the response y(7)
(expressedvia Volterra series) is excited by a set of k unit amplitude
exponentials at the arbitrary frequencies sy, s2, .. ., 8, the output
will contain exponential components of the form

0

n!

YO=D )

myimyl. .. my!
n=1 m

x H, (s, 8, ...8)expl(s; + s, + -+ s0)7] (25)

where because s; occurs in (s, Sy, ..., S;) m; times, there are
n!/(m!m,!...m!) identical terms; m under the summation

——  First Order Kernel
——« Second Order Kernel
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0.004

0.002

Frequency 0;=0,=03, [Hz]
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Fig. 3 First two aeroelastic kernels for plunging-pitching coupled motion (co =10 N/ms™1; ¢4y =10 N/m2s™2; koq = 10* N/m; kop =107 N/m?;
a=—0.2m; U, =0.4Up).

sign indicates that the sum includes all of the distinct vectors
(my, m,, ..., my) such that

E m; =n

i=1
The presenceof nonlinearitiescausesharmonicexcitationsand sums
of harmonics to appear in the response of the aeroelastic system.
Because of the nonlinear formulation, different frequencies can be
expected as well.

From an energy point of view, we can observe that H, (s;) pro-
duces a single-frequency output in response to the simple input e*!’.
However, because the system is nonlinear H,(sy, s,) takes into ac-
count the terms that produce an output energy corresponding to
the sum of frequencies w; + w,, or in other words to the input
€1+ Similarly, the third-order nonlinear aeroelastic kernel will
inject a mix of three input frequencies into the total system out-
put (Figs. 2-4). This is the great advantage of this methodology
over the other approaches based on the first-order FRF. In contrast
to these methodologies, Volterra’s series approachis able to capture
the transfer of energy between frequencies, which s typical for non-
linear systems.

V. Results and Discussion

For numerical simulations, unless otherwise stated, the follow-
ing parameters were used: (m=1kg; b=1m; C,, =2m; ¢;,; =
10 N/ms™"; ¢ =10 N/m?s~2; ¢j3 = 10 N/m?s™3; ky; = 10* N/m;
kj, =107 N/m?; k3 =108 N/m3; p = 1.225 kg/m®; Uy, =1 m/s).
For the two-dimensional wing section experiencing pure plunging
only, the first three aeroelastic kernels in magnitude and phase are
depicted in Fig. 2 as a function of the frequency, considering the
representation along the diagonal of the plane w,, w,, that is, for
w=w; =w; =ws3. As is clearly seen, a reduced influence on the
response of the third kernel is experienced.

In Fig. 3 there are depicted the Volterra kernels for the wing sec-
tion featuring plunging and pitching DOFs. Also in this case the
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Fig.4 Three-dimensional and contour plots of second-order aeroelastic kernel.
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Fig.5 Convergence study involving the first three kernels and comparison with the exact nonlinear aeroelastic response to a 1-cosine gust pulse, as

shown in the inset. Num. Int., Numerical integration.

plots include the magnitude and phase for the kernels in plunging
H!" and pitching H*, in which i identifies the order of the ker-
nel. In Fig. 4 three-dimensional plots of the magnitude and phase
(Figs. 4a and 4c, respectively) of the second-orderkernel vs the two
frequenciesw, and w, are provided. The contour plots (Figs. 4b and
4d, respectively) reveal the symmetry of this kernel with respect to
the leading diagonal represented by w; = w,. To assess the versa-
tility and provide a validation of this methodology, a comparison
of the predictions of the aeroelastic response of a nonlinear one-

DOF wing section using three approximationsis shown in Figs. 5
and 6. The excellent agreement of predictions demonstrates both
the accuracy of the aeroelastic model and also the power of the
methodology based on the Volterra series and indicial function ap-
proach. The first-, second-, and third-order approximations of the
aeroelasticresponseto a 1-cosine gustload and triangularblast load
are plotted for different parameters, along with the exact response
obtained via numerical integration. Both figures reveal the rapid
convergence of the approximation. The same approach has been
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Fig. 6 Convergence study involving the first three kernels and comparison with the exact nonlinear aeroelastic response to a triangular blast load,

as shown in the inset. Num. Int., Numerical integration.
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Fig.7 Convergencestudy involvingthe first three kernels and compari-
son with the exact nonlinear aeroelastic response of the impulse response
described in Eq. (26) (k =1; wg = 27r). Num. Int., Numerical integration.

applied to a nonlinear time-varying systemrepresentedin Ref. 39in
which a transientresponse analysis of a continuous system has been
addressed via functional techniques and multidimensional Laplace
transformation. The impulse response of the system, represented by
the differential equation
de

d( ) + Ac(t) + km(t)c(t) + ec*(t) = RS(t) (26)
evaluated with the present analysis,coincides with that shown in the
Ref. 39 in which the parametersinuseare A=1; R=1; k=1, 10;

-2

¥
-5

0 0.2 04 0.6

o 8 !
Fig.8 Convergence study involvingthe first three kernels and compari-
son with the exact nonlinear aeroelastic response of the impulseresponse
described in Eq. (26) (phase-space representation) (k = 10; wg =207).

e=1;m(t) = sin(wyt); wy =2, 207 . Figures 7 and 8 show the ex-
cellent agreement of these two approaches. In Figs. 8, the phase
space of the two responses is compared. The results provided in
these figures constitute a strong test of the speed of convergence of
the present method.?>*° The coefficients of the nonlinear equation
are not small, nor is the period of the time-varying parameter long
compared with the natural time constant of the system.

The third-order Volterra kernel in terms of its magnitude and
phase for the case in which w; =w, are depicted in a three-
dimensional plotin Figs. 9a and 9c, and the corresponding contour
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plots are presented in Figs. 9b and 9d. The second- and third-order
Volterra kernels, in particular, and the nth order kernel, in general,
are the second-, third-, and nth-order TFs of the aeroelastic system,
where the point H, (sy, . . ., s,) gives the magnitude and phase of the
selected power n outputcomponentat frequencyof w; + - - - + w, as
aresultofinputsinusoidsat frequencieswy, . . . , w,. Inthis sensethe
high-order Volterra kernels have been determined via multiple sine
input. For all of these reasons, these kernels will provide a direct

NONLINEAR IMPULSE RESPONSE
L, YOO Yaul(t)t Yanlt)

03¢

y®

15
Time, {s]

20
Fig.11 Influence of the linear stiffness coefficient k;; on the nonlinear
aeroelastic response; parameters as in Fig. 3.

NONLINEAR IMPULSE RESPONSE
YO=Y1OF yau()+ Yault) |

03 : Ny
0.2
01

0

y(t)

0.1

0.2

03 RERRIER N0 ]
20 25 30

15
Time, [s]

10

Fig.12 Influence of the linear damping coefficient c¢;,; on the nonlinear
aeroelastic response; parameters as in Fig. 3.
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physical interpretation of the high-order terms of the aeroelastic
system. From Fig. 4 it appears that the two peaks along the lead-
ing diagonal of H, correspondto the resonance of the first kernels
w; (see Fig. 2) and a resonance o, /2, meaning that the effect of the
quadraticnonlinearitieswill be a maximum for excitation frequency
of w; and w, /2. Consequently in Fig. 9, along the leading diagonal
there are three peaks (w;, w; /2, and w, /3), implying that the effect
of the cubic nonlinearities will be maximum when the frequency of
the sinusoidal input coincides with these frequencies. In addition,
as it appears clearly from Fig. 2, the magnitude of the second and
third kernels decreasesrapidly (peak of H, is 2.4 times smaller then
H, and the peaks of Hj; is 10 times smaller than H,), implying that
accurate results can be obtained with a few kernels only.

Determination of the subcritical aeroelasticresponse to any time-
dependent externally applied load is useful in the design of wing
structures and of the associated feedback control systems. This re-
sponse can be determined by use of the complex inversion formula
from the frequency domain to the time domain. Another idea is to
find the one-dimensional original response after the identification
of all of the variables from the n-dimensional Laplace transformed
space.'*4! This case can be represented as

g(r)Ehn(Tls TZs~~~Tn)|r|:r2:---:ru:r (27)
Because h, = $£7'[H,], g(t) is obtained using G(s) = L[g(7)];
G(s) can be calculated by means of an (n — 1)-dimensional inver-
sion formula. The function g(t) has a correspondingLaplace trans-
form G (s) (also called associated transform of H,) in the single-
dimensional Laplace-transformed space.

The response in time can be obtained from H(sy, sz, ..., S,)
by determining G (s) first and evaluating the one-dimensional in-
verse Laplace transform g (7). This approachis called associationof
variable.'"**! Using this concept, the nonlinear aeroelastic response
in the time domainis depictedin Figs. 10 fora one-DOF wing section
featuring the plunging DOF. In this figure the first plot represents
the linear impulse response that corresponds to the convolutionin-
tegral for the linear analysis. The other three plots represent the
components of the response caused by the second- and the third-
order kernels and the total response as a combination of the three
partial responses. The influence of the linear stiffness and of the
damping coefficients on the response are displayedin Figs. 11 and
12. An increase of those coefficients contributes to the decrease
of the magnitude of the kernels and, consequently, of the response
amplitude. Results not shown in this paper reveal that the geomet-
rical nonlinearities contribute to a limited growth of the deflection
in the postflutter range and so to the avoidance of the occurrence of
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Fig. 13 Influence of the flight speed on the nonlinear aeroelastic response to a sonic boom (7, =15s; r = 2), as shown in the inset, evaluated with three

kernels; parameters as in Fig. 3.
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catastrophic failures.'® Figure 13 highlights the effect of the speed
parameter U, on the wing sections subjected to sonic-boom pres-
sure signature as shown in the inset. Herein 7, denotes the positive
phase duration of the pulse measured from the time of impact of
the structure. For » =2 the N-shaped pulse degeneratesinto a sym-
metric sonic-boom pulse, in the sense that its positive phase has the
same characteristics as its negative one, and for r =1 a triangular
pulse that correspondsto an explosive pulse is obtained. It becomes
apparent that the amplitude of the response time history (that have
been evaluated for practical use with three kernels) increases with
the increase of U,,. As it clearly appears, the plunging amplitudes
at zero flight speed are slightly larger than those emerging at a small
flight speed (U,, = 0.2U[). This is caused by the fact that, in con-
trast to the former case when the aerodynamic damping term is zero,
in the latter case the aerodynamic damping that is associated with
this flight case contributes toward attenuatingthe oscillations. How-
ever, this trend is reversed when the flight speed further increases,
and in such a case larger amplitudes are experienced toward the
flutter speed. Moreover, for the speed parameter U,, greater than
that corresponding to the flutter conditions (these ones determined
within the linearized aeroelastic system), as expected, the response
becomes unbounded.

VI. Conclusions

In this paper several issues related to the approach of the non-
linear aeroelastic response via Volterra series approach have been
presented. Following the same approach presented here, the char-
acter of the instability boundary, that is, benign or catastrophic,
can also be addressed. It was also shown that the method based on
Volterraseries providesa unified and efficient approach for address-
ing nonlinear aeroelastic phenomena. Moreover, this approach can
be extended as to include also active control capabilities. Compar-
ison of results carried out via Volterra series in conjunction with
indicial functions approach and classical approach has been pro-
vided for the linearized model. For the fully nonlinear model, a
comparison with the exact numerical simulation of the nonlinear
aeroelastic response has been provided. The aerodynamic indicial
functions (for incompressiblecompressible flowfields) considered
in conjunctionwith Volterra’s series approach can be used as a pow-
erful analytical tool for developing unsteady aerodynamic models
and a unified nonlinear aeroelastic model.
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