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Aeroelastic Response of Nonlinear Wing Sections
Using a Functional Series Technique
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The determination of the subcritical aeroelastic response and � utter instability of nonlinear two-dimensional
wing sections in an incompressible � ow� eld via indicial functions and Volterra series approach is considered. The
aeroelastic governing equations are based on the inclusion of stiffness and damping nonlinearities in plunging and
pitching and of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pres-
sure pulse. Nonlinear unsteady aeroelastic kernels are obtained, and based on these, time histories of the subcritical
aeroelastic response are determined. Conclusions and results displaying the implications of the considered effects
are supplied.

Nomenclature
a = dimensionless elastic axis position

measured from the midchord, positive aft
C.k/; F.k/; G.k/ = Theodorsen’s function and its real and

imaginary parts, respectively
CL® = lift-curve slope
c = chord length of two-dimensional wing

section, 2b
chi; c®i ; Khi; K®i = damping and stiffness coef� cients

in plunging and pitching (i D 1,2,3-linear,
quadratic, cubic), respectively

h; » = plunging displacement and its
dimensionless counterpart .h=b/,
respectively

hn ; Hn = nth order Volterra kernel in time and its
Laplace transformed counterpart,
respectively

I®; r® = mass moment of inertia per unit wing
span and the dimensionless radius
of gyration .I®=mb2/1=2 , respectively

La ; Ma = total lift and moment per unit span
Lb; lb = overpressureof the N -wave shock pulse

and its dimensionless counterpart,
.Lbb=mU 2

1/, respectively
la; ma = dimensionless aerodynamic lift

and moment, .Lab=mU 2
1/ and

.Mab2=I®U 2
1/, respectively

m; ¹ = airfoil mass per unit length and reduced
mass ratio, .m=¼½b2/, respectively

Pm; Ã m = peak re� ected pressure amplitude and its
dimensionless counterpart .Pm b=mU 2

1/,
respectively

r = shock pulse length factor

Received 27 February 2001; revision received 28 September 2001; ac-
cepted for publication15 October 2001.Copyright c° 2001by the American
Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies
of this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923; include the code 0001-1452/02
$10.00 in correspondence with the CCC.

¤Visiting Assistant Professor, Department of Engineering Science and
Mechanics, 0219 Norris Hall. Member AIAA.

†Professor of Aeronautical and Mechanical Engineering, Department of
Engineering Science and Mechanics, 0219 Norris Hall.

‡SeniorResearch Scientist and SeniorAerospace Engineer,Aeroelasticity
Branch, Structures and Materials Competency. Senior Member AIAA.

S®; Â® = static unbalance about the elastic axis
and its dimensionless counterpart S®=mb,
respectively

s j ; = Laplace transform variable and Laplace
operator, respectively, s j D ik j I i D

p
¡1

t ; ¿ = time variables and dimensionless
counterpart .U1t=b/, respectively

tp ; ¿p = positive phase duration, measured from the
time of the arrival of the pulse, and its
dimensionless value, respectively

U1; V = freestream speed and its dimensionless
counterpart .U1=b!®/, respectively

x.t/ = time-dependent external pulse (traveling
gust and wake blast wave)

y.t/ = response in the considered degree
of freedom (pitch ® and/or plunge h)

® = twist angle about the pitch axis
³h ; ³® = structural damping ratios in plunging

.ch=2m!h/ and pitching .c®=2I® !®/,
respectively

½ = air density
Á.¿ / = Wagner’s indicial function
!; k = circular and reduced frequencies

.!b=U1/, respectively
!h ; !® = uncoupled frequencies in plunging

and pitching .Kh=m/1=2 and .K®=I®/1=2 ,
respectively

N! = plunging–pitching frequency ratio .!h=!®/

Superscripts

(O¢) = quantities in Laplace transformed space
(P¢/; .¢/0 = derivatives with respect to time t

and the dimensionless time ¿ , respectively

I. Introduction

I T is a well-known fact that within the linearized approach of
the aeroelasticitydiscipline it is possible to determine the diver-

gence and the � utter instability boundaries and also the linearized
subcritical aeroelastic response to time-dependent external pulses.
On the other hand, the nonlinearapproachof the aeroelasticproblem
can provide important information such as 1) the in� uence of the
considerednonlinearitieson the subcriticalaeroelasticresponseand
2) whether the aeroelastic instabilities are benign or catastrophic.
In other words, such an approach gives the possibility of determin-
ing in what conditions the � utter speed can be exceeded without
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the occurrence of a catastrophic failure of the wing (in which case
the � utter is benign), as well as the conditions in which undamped
oscillations might appear at velocities below the � utter velocity (in
which case the � utter is catastrophic). In addition, the considered
nonlinearities play a great role on the subcritical aeroelastic re-
sponse of wing sections. Because of the strong implications of var-
ious nonlinearities on the aeroelastic response of highly � exible
lifting surfaces, their related aeroelastic phenomena should be an-
alyzed within a more encompassing context than in the standard
linearized framework. Aircraft wing structures often feature non-
linearities,which affect their aeroelastic behavior and performance
characteristics,and � utter boundaries.For these reasons, in order to
investigatethe aeroelasticbehaviorof lifting surfaces in the vicinity
of the � utter boundary the aeroelastic governing equations need to
include correspondingnonlinear terms.

The advantage of applying a technique based on Volterra’s
series1¡5 and indicial functions6¡8 consists, among others, in the
possibility to investigate the nonlinear aeroelastic systems within a
rigorous theoretical basis. For exhaustive treatments of the Volterra
series concept applied in the structural dynamics, the interested
reader is referred to the recent book by Worden and Tomlinson.9

As a limiting case, based on the � rst-orderVolterra kernel, the study
of the linear aeroelastic stability of the systems can be carried out.
This methodology can encompass the case of an arbitrary number
of degrees of freedom and at the same time is conceptually clearer,
computationallysimpler, and can providemore accurate and realis-
tic results as compared to the conventional techniquesused in non-
linear aeroelastic systems based on perturbation and multiple-scale
methods. In addition, as shown in this paper, this method features a
faster convergenceas compared to the other methodologies.9 More-
over, this method does not experience the limitations, usually char-
acterizing the other techniques such as the Hilbert transform,9¡11

developed to identify nonlinear systems from the � rst-order fre-
quency response function (FRF) or the phase plane methods that
can describe the motion as just a function of two variables. In con-
trast to methodsthatare suitablemainly to single-degree-of-freedom
systems, the Volterra series approach overcomes the shortcomings
facing the other methods and provides a foundationfor understand-
ing the issue of the exchange of energy between the different mode
frequencies.

Toward the end of determining the nonlinearunsteadyaeroelastic
kernels,theharmonicprobingalgorithm,referredto as themethodof
growing exponentialsadvanced by Bedrosian and Rice12 and Boyd
etal.13 and themultidimensionalLaplacetransform14 will beused.In
addition to the aeroelastic response and determinationof the � utter
instability boundary,Volterra series considered in conjunctionwith
this nonlinear aeroelasticmodel can be used to study the conditions
rendering the � utter boundary a benign or a catastrophic one.15;16

Moreover, when the closed-loop dynamic response of actively
controlled lifting surface is analyzed, also the feedback control
forces and moments should be included.17¡20 The Volterra series
approach can be applied toward this control purpose as well.

Volterra’s series approach provides a � rm basis for the treatment
of the nonlinear subcritical aeroelastic response, in the sense that it
suppliesan explicit relationshipbetween the input(any type of time-
dependent external pulses, i.e., blast load, sonic boom, gust loads)
and its response. With the so-called Volterra kernel identi� cation
scheme, the modeling of an aeroelastic system using this approach
becomes feasible. However, this methodology requires determina-
tion for each speci� c � ight conditions of the correspondingnonlin-
ear kernelof the Volterra series.For this reason, the recent interestin
the modeling of unsteadynonlinearaerodynamicshas been focused
on the identi� cation of Volterra kernels in the time domain21¡24

and in the frequency domain.25 A number of fundamental contri-
butions related to Volterra series1;2 have been applied, mainly in
electrical engineering.3¡5 The original studies on functional series
by Volterra1 have been continued in the works by Volterra himself
and of those by Rugh,3 Schetzen,4 and Boyd.5 These concepts have
been mainly used in the generalnonlinearsystem theory.Originally,
the method of Volterra series and Volterra kernel identi� cation was
developed to identify the nonlinear behavior in electrical circuits.
In the aerospace � eld fundamental contributions were brought by

Silva,21¡24 who has shown that the method is also applicable to
aeroelastic systems (aerodynamic reactions and forced structural
model). These contributions have opened a very promising avenue
toward modeling and approachingnonlinear aeroelastic systems.

The present investigation concerns the aeroelastic response of
two-dimensional nonlinear wing sections exposed to an incom-
pressible � ow� eld and subjected to an external pressure pulse.26¡28

Based on Volterra functional series approach,1¡5 pertinent infor-
mation about the effects of nonlinearities on either the aeroelastic
response in the subcritical � ight speed regime and their implication
on the � utter boundary are supplied.

II. Basic Concepts
Because the principleof superpositionis not applicable to nonlin-

ear systemsand in order to accountfor the varioustypesandnumbers
of inputs, a combination of transfer functions (TFs) is used. These
TFs are generated using the multidimensional Laplace transform
of the Volterra kernels via a Mathematica® code developed by the
authors.29 Our approach,intendedto addressthe subcriticalresponse
of thenonlinearaeroelasticgoverningequations,is basedon its exact
representation as an in� nite sum of multidimensional convolution
integrals, the � rst one (i.e., the linear kernel) being analogous to the
linear indicialaeroelasticfunction.The full nonlinearaeroelasticre-
sponsewill be composedof additionalhigher-ordercontributions.In
the frequency domain if the nonlinear function governing a system
is “smooth,” then for small inputs the system must be asymptoti-
cally linear.3 One of the key issues is to determine, corresponding
to the consideredtype of structural,damping and aerodynamicnon-
linearities, the pertinent Volterra kernels. When active control is
implemented the corresponding kernels should be determined as
well.

III. Theory
In an attempt to make the paperreasonablyself-contained,several

elements associatedwith the indicial functionsand Volterra’s series
as applied to aeroelastic system will be supplied.

A. Indicial Theory and Aerodynamic Loads
Using the aerodynamic indicial functions corresponding to the

transient aerodynamic reaction to a step pulse, the aerodynamic
forces and moments induced in any maneuver and � ight regime
can be determined. Aerodynamic forces and moments acting on a
rapidly maneuvering aircraft are, in general, nonlinear functions of
the motion variables,their time rate of change,and the history of the
maneuvering.30 However, in this study the linear aerodynamic the-
ory is adopted. Once the response of the system to a step change in
one of the disturbingvariables (i.e., the indicial response) is known,
the indicialmethodpermits determinationof the responseto an arbi-
trary schedule of disturbances.There is a critical value of the � ight
speed, referred to as the � utter speed, above which the steady mo-
tion becomes unstable.The behaviorof an aeroelastic system in the
vicinity of the � utter instability can be investigated only in a non-
linear framework. In this context the Hopf bifurcation analysis can
provide important information about the aeroelasticbehavior in the
vicinity of the � utter boundary. In the case of supercriticalHopf bi-
furcation, � nite amplitude oscillationsin the post� utter speed range
can occur, whereas in the case of the subcritical Hopf bifurcation
oscillationswith increasingamplitudes, even if the system operates
before reaching the � utter speed, can emerge.31¡33

We need to mention that within the nonlinear indicial theory34

the response of a nonlinear system to an arbitrary input can be
constructed by integrating a nonlinear functional that involves the
knowledge of the time-dependent input and the kernel response.
Whereas within the linear indicial theory the linear kernel or linear
impulse responsecan be convolutedwith the input to predictthe out-
putof a linear system, thenonlinearindicialtheoryconstitutesa gen-
eralization of this concept. It can also be shown that the traditional
Volterra–Wiener theory of nonlinearsystems constitutes a subset of
the nonlinear indicial theory. The nonlinearunsteady aerodynamics
valid throughout the subsonic incompressible/compressible, tran-
sonic, and supersonic � ight speed regimes can be used and deter-
mined via the use of nonlinearindicial functionsin conjunctionwith
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the Volterra series approach.Within the linearizedunsteadyaerody-
namicsof compressible� ight speeds,themonographbyLeishman35

provides an excellent presentationof the state of the art of the indi-
cial function concept.

B. Volterra Functional Series Theory
As it was shown,3;4 within Volterra’s series approach the full

response in the time domain y.t/ of the nonlinear systems with
memory can be cast as

y.t/ D
1X

k D 0

yk .t/ (1)

where yk.t/ is expressed as

yk.t/ D
Z

k

ZZ

times

Z 1

¡1
hk .t ¡ ¿1; t ¡ ¿2; : : : t ¡ ¿k /

kY

i D 1

x.¿i / d¿i (2)

By a changeofvariables,it is possibleto expressEq. (2) in contracted
form as

yk .t/ D
Z

k

ZZ

times

Z 1

0

hk .¿1; ¿2; : : : ¿k/

kY

i D 1

x.t ¡ ¿i / d¿i (3)

It is assumed that x.t/ D 0 for ¿ < 0, implying that the system is
causal.

With this restriction,all of the integrals in the subsequentdiscus-
sions are different from zero over the time range [0; 1/. Restricting
the development of Eq. (3) to the � rst three terms, one obtains

y.t/ D
Z

h1.¿1/x.t ¡ ¿1/ d¿1

C
ZZ

h2.¿1; ¿2/x.t ¡ ¿1/x.t ¡ ¿2/ d¿1 d¿2

C
ZZZ

h3.¿1; ¿2; ¿3/x.t ¡ ¿1/x.t ¡ ¿2/x.t ¡ ¿3/ d¿1 d¿2 d¿3

C ¢ ¢ ¢ (4)

The response of the system can be expressed in the frequency do-
main as well. Volterra series is essentially a polynomial approxi-
mation of the system, extension of Taylor series to systems with
memory, whereas Volterra kernels hi .si / are a direct extension of
the impulse response concept of the linear system theory to mul-

Fig. 1 Aeroelastic response to Dirac delta impulse, as represented in inset. Comparison of response prediction based on the � rst Volterra kernel and
the exact solution.

tiple dimensions.1;3¡5 Consequently, a multidimensional analogue
of the impulse response can be used to characterize a nonlinear
system.21¡24

Having in view that the memory of aeroelasticsystems is not in� -
nite and, at the same time, the time-dependent external excitations,
such as impulse, gust, blast, and sonic-boom pressure signatures
are nonpersistent (in the sense that their effect decay as time un-
folds), it is possible to characterize a nonlinear aeroelastic system
via Volterra series. This fact is re� ected in the interpretation of
Volterra kernels as higher-order impulse response functions, that
is, h.¿1; : : : ; ¿n/ ! 0 as ¿1; : : : ; ¿n ! 1. We will use the de� ni-
tion of the nonlinear transfer function (TF) or higher-order impulse
response functions, namely,

Hn.s1; s2; : : : ; sn/ D
ZZ

: : :

Z
hn.¿1; ¿2; : : : ; ¿n/

£ e¡s1¿1 e¡s2¿2 ¢ ¢ ¢ e¡sn ¿n d¿1 d¿2 ¢ ¢ ¢ d¿n (5)

as well as of their inverted counterparts:

hn.¿1; ¿2; : : : ¿n/ D
³

1

2¼ i

´n Z
¾n C i1

¾n ¡ i1
¢ ¢ ¢

Z
¾2 C i1

¾2 ¡ i1

Z
¾1 C i1

¾1 ¡ i1

£ Hn.s1; s2; : : : ; sn/es1¿1 es2¿2 ¢ ¢ ¢ esn ¿n ds1 ds2 ¢ ¢ ¢ dsn (6)

Once Volterra’s kernels are known, the response of the nonlinear
aeroelastic system can fully be identi� ed. As demonstrated in the
Schetzen works,3;5 without loss of generality the kernels will be
taken as symmetric, in the sense of Hn.s1; s2; : : :/ D Hn.s2; s1; : : :/,
with a similar relationship being valid for hn as well.

If we focus our attention on the linear system, the Laplace trans-
form of the � rst term of Eq. (4) yields the familiar Laplace do-
main expressionY .s/ D H .s/X .s/, where Y .s/; H .s/; X .s/ are the
Laplace transformsof y.¿ /; h.¿ /; x.¿ /, respectively.H .s/ is the TF
of the system. It is a well-known fact that for the linear system ei-
ther the � rst TF or the � rst kernel in time h.¿ / contain all of the
information about the aeroelastic system. Moreover, if the system
is linear, the external load is uniquely related to the response by a
convolution integral. With the use of functional series, that is, the
Volterra series, this functional representation can be extended to
nonlinear systems. The comparison between the prediction of the
linear aeroelastic responses of the two-dimensionalwing section in
incompressible� ow� eld based on the Volterra series approach [us-
ing Theodorsen’s functionC.k/] and on the exact solutionbased on
convolution integrals [using Wagner’s function Á.¿/] is presented
in Fig. 1 (m D 1 kg; ch1 D 0:1 N/ms¡1; kh1 D 102 N/m; CL® D 2¼ ;
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b D 1m; ½ D 1:225 kg/m3; U1 D 1 m/s). The indiscernible differ-
ence in the two response predictions assesses both the accuracy of
the aeroelastic model and also the power of the methodology that
combines Volterra’s series and the indicial function.

IV. Mathematical Formulation
A. Structural and Damping Nonlinearities

The aeroelasticgoverningequation for one- and two-dimensional
degree-of-freedom(DOF) wing sections that include the nonlinear
stiffness and the damping in plunging and pitching will be ana-
lyzed next. In this sense, a one-DOF wing section featuring purely
plunging motion and a two-DOF wing section featuring inertial and
aerodynamiccouplingin plungingh andpitching® will be analyzed.
As already mentioned, the unsteady aerodynamic system is consid-
ered linear. A harmonic time-dependentexternal concentrated load
is also included in the analysis. This can be considered to corre-
spond, for example, to an engine mounted on an aircraft wing. As
a characteristicof this approach, the TFs of the system would exist
and would be the same for any excitations,9;36¡38 such as impulse,
gusts, airblast, or sonic booms (random or deterministicones). This
is because TFs are independent of the input to the system, being
a characteristic of the system itself. As a reminder, the validity of
this method is based on the use of continuouspolynomial-typenon-
linearities. For nonlinear ordinary differential systems there are, in
general, an in� nite number of Volterra kernels. In practice, one can
handle only a � nite number of terms in the series,which leads to the
problem of truncation accuracy. However, in the work by Wiener2

it is suggested that the � rst terms of the series might be suf� cient to
represent the output of a nonlinear system if the nonlinearities are
not too strong.

The use of the multidimensionalLaplace transformas a function
of several variables is a tool useful in stationary nonlinear system
theory. The multivariable convolutions can be represented in terms
of productsofLaplacetransforms.It is well knownthat thenonlinear
aeroelasticsystemscannotbe describedby a simple TF for two main
reasons: 1) the response contains both the unsteady aerodynamic
loads and the external excitationeffects, and 2) in the nonlinearcase
the superposition principle is not applicable. It is also well known
that any time-dependent external excitation, periodic or otherwise,
can be represented to an arbitrary degree of accuracy by a sum of
sinusoidal waves.36 In this context, if the external load is expressed
in terms of multiple sinusoidal forms (for example, a traveling gust
load) this is easily expressed in exponential form, that is,

u.t/ D A cos.!At/ C B cos.!B t/

D .A=2/.esA t C e¡sA t / C .B=2/.esB t C e¡sB t / (7)

where sA D i!A and sB D i!B . For clarity, it is convenient to adopt
this approachfor a single-DOFsystem.These resultshavemoregen-
eral bearing and can be extended for systems with multiple DOFs.
In fact, by using the classical approach of the one-dimensionalFRF
it is possible to derive an analytical form of the multidimensional
frequency response characteristics of nonlinear systems. The sys-
tems based on one DOF (plunging h) and two DOFs (pitching ®
and plunging h) will be considered in the next sections.

B. Plunging Airfoil Motion in an Incompressible Flow� eld
The nonlinear equation of an airfoil featuring plunging motion

can be expressed as

m Rh.t/ C
nX

i D 1

©
chi[ Ph.t/]i C khi[h.t/]i

ª
¡ La.t/ D Lb.t/ (8)

where i de� nes the degree of the considerednonlinearity.In the nu-
merical simulations i will assume the values 1,2,3, implying linear,
quadratic, and cubic stiffness and damping nonlinearities. In addi-
tion, m is mass parameter and chi, khi are the damping and stiffness
parameters associated with the damping and de� ection in plung-
ing corresponding for the i th power. In the right-hand-side mem-
ber of these equations, Lb.¿/ denotes the external time-dependent
load acting on the rigid wing. In Eq. (8), the unsteady aerodynamic

lift is represented as a function of the plunging degree of freedom
as

La.¿/ D ¡CL®½U 2
1

Z
¿

¡1
Á.¿ ¡ ¿0/h

00 d¿0 ¡ 1
2

½CL®U 2
1h00 (9)

The noncirculatory component present in Eq. (9) is represented in
terms of convolution integral of the indicial Wagner’s function.

To explainhowthismethodologyworks, let us determine,in terms
of Volterra series, how a system responds to a harmonic or periodic
time-dependent load. Let consider a periodic external excitation of
the form

Lb.t/ D
nX

j D 1

X j e
s j t (10)

The information acquired by the response to a harmonically time-
dependent load can be used to obtain the response to any time-
dependent external excitation. In fact, considering the case of a
concentrated load arbitrarily located in the x; y plane of the wing
we have

u.x; y; t/ D A±.x ¡ x0; y ¡ y0/e
i!t (11)

where ±.¢/; x0; y0; A; ! denote Dirac’s distribution, location of the
load, its amplitude, and excitationfrequency,respectively.Once the
TF is determinedits counterpartin the time domain can be computed
via the inverse Laplace transform ¡1:

TF.x; y; t/ D ¡1[TF.x; y; s/] D 1

2¼ i

Z ¾i C 1

¾i ¡ i1
TF.x; y; s/es t ds

(12)

The general procedure to identify the aeroelastic kernels of vari-
ous order .1; n/ is to consider a general input in the form provided
in Eq. (10) and to equate, for the generic term of the nth order,
thecoef� cientsof X1 X2 ¢ ¢ ¢ Xn exp[.s1 C s2 C ¢ ¢ ¢ C sn/t ]. As anex-
ample, the � rst aeroelastic Volterra kernel that describes the linear
system, obtained by neglecting the nonlinear terms in the aeroe-
lastic governing equations, is obtained by considering the input
load as Lb.t/ D X1es1t [which in dimensionlessform is expressedas
lb.t/ D .b=mU 2

1/X1es1t ]; the response of the system is postulated
in the form h.t/ D H1.s1/X1es1t C higher-order terms. Substituting
h.t/ and its derivatives in the governing equation of motion, one
determines the coef� cient of X1es1t .

In a linear aeroelastic formulation the system is completelychar-
acterized by a TF H1.s1/ that contains the aerodynamic term as
follows:

H1.s1/ D
¡
kh1 C ms2

1 C ch1s1

C s1½CL®bU1C [¡i s1b=U1] C
- - - - - - - - -
1
2 ½CL®s2

1b2
¢¡1

(13)

Herein the Theodorsen’s function C , connected with the Wagner’s
indicial function Á.¿ / via the Laplace’s transform as

C.¡i s/ D s

Z 1

0

Á.¿ /e¡s¿ d¿

has been included in the formulation. The terms underscored by
the solid line correspond to the unsteady aerodynamic loads com-
ponent (circulatory term), whereas the dashed line corresponds to
the effect of the added mass. When the aerodynamic loads are ne-
glected and for s D i!, this result coincides with that of the linear
FRF, derived via the conventional modal analysis. The condition
s D i! corresponds to zero initial conditions; the effect of the initial
condition on the nonlinear aeroelastic response can be included via
s D ¾ C i!.

For purely mechanical systems, in the frequency domain the re-
sponse via Volterra series has been carried out by several authors.
In the present study an alternative procedure, based on the multi-
variable kernel transforms techniques, referred to as higher-order
transfer functions (HTFs) is pursued. The two approaches can be
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correlated to each other, and this is shown also in this work. Assum-
ing zero initial condition, the FRFs are obtained from the TFs by
replacing the Laplace transform variable s with j!:38

In the presentnonlinearaeroelasticsystem, toward the estimation
of HTFs that are de� ned as multidimensionalLaplace transform of
Volterra kernels, a sequence of TFs are employed.

By the use of the linear TF H1.s1/, the behavior of the linear
system is easily determined. It will be necessary to � nd a complete
set of Volterra kernel transforms Hn.s1; s2; : : : ; sn/ for nonlinear
systems, and for this, in practice, we will use a convergent trun-
cated series. Probing the system with a single harmonic yields only
the information about the value of the TFs terms on the diagonal
line of the plane s1; s2 in the Laplace transformed space, where
s1 D s2 . However, to obtain information elsewhere in this space
one should use multifrequency excitations. In the same way the
second-orderVolterra kernel can be determinedapplyinga load de-
pendingon two different frequenciesexpressedas Lb.t/ D X1es1 t C
X2es2 t . In this case we can express the plunging response in the
form

h.t/ D H1.s1/X1es1t C H1.s2/X2es2t C H2.s1; s1/X 2
1e2s1t

C H2.s2; s2/X 2
2e2s2t C H2.s1; s2/X1 X2e

.s1 C s2/t

C H2.s2; s1/X2 X1e
.s2 C s1/t C h:o:t: (14)

Substituting Eq. (14) in Eq. (8) and equating the terms containing
X1 X2e.s1 C s2 /t , the second-order aeroelastic Volterra kernel in the
Laplace transformed space is obtained as

H2.s1; s2/ D ¡.s1s2ch2 C kh2/H1.s1/H1.s2/H1.s1 C s2/ (15)

where

H1.s1 C s2/ D
©
kh1 C .s1 C s2/

2m C ch1.s1 C s2/ C .s1 C s2/

£ ½CL®bU1C[¡i.s1 C s2/b=U1] C 1
2
½CL®.s1 C s2/2b2

ª¡1

(16)

is the � rst-order Volterra kernel in the Laplace transformed space
at the frequency !1 C !2 [that is obtained from Eq. (13) in which
s1 is replaced by s1 C s2]. The terms H2.s1; s1/ and H2.s2; s2/
can be determined from Eq. (15) replacing s2 with s1 and vice
versa, respectively. Following the same steps, applying the load
Lb.t/ D X1es1 t C X2es2 t C X3es3t , equating the terms in the form
X1 X2 X3 exp[.s1 C s2 C s3/t ], and remembering that

H1.s1 C s2 C s3/ D
©
kh1 C .s1 C s2 C s3/

2m C ch1.s1 C s2 C s3/

C .s1 C s2 C s3/½CL® bU1C[¡i.s1 C s2 C s3/b=U1]

C 1
2 ½b2CL® .s1 C s2 C s3/

2
ª¡1

(17)

the expressions for the third-order Volterra kernel in the Laplace
transformed space results

H3.s1; s2; s3/ D ¡ 2
3 ..H1.s3/f3H1.s1/H1.s2/.kh3 C ch3s1s2s3/

C 2H2.s1; s2/[kh2 C ch2.s1 C s2/s3]g

C 2fH1.s2/H2.s3; s1/[kh2 C ch2s2.s1 C s3/]

¡ H1.s2/H2.s2; s3/[kh2 C ch2s1.s2 C s3/]g//=[H1.s1 C s2 C s3/]

(18)

The constants kh2 and ch2 multiply the whole expression of H2,
and, if the quadratic nonlinear term in the aeroelastic governing
equations is absent, this term vanishes. Herein one of the general
propertiesof Volterra’s series is recalled: if all nonlinearterms in the
equation of motion for the system consist of odd powers of x and
y, then the associated Volterra series have no even-order kernels,
and as a result it will possess no even-orderTFs. It is also a general
property of systems that all TFs can be expressed in terms of H1.
The expressions are functions of the system and can be obtained
by using the harmonic probing algorithm. It clearly appears that the
HTFs, de� ned from the Volterra series, are independentof the input
to the system.

C. Plunging-PitchingAirfoil Motion in an Incompressible Flow� eld
The aeroelasticgoverningsystemofanairfoilfeaturingplunging–

twisting coupled motion exposed to a harmonic time-dependentex-
ternal excitation is

m Rh C S® R® C
nX

i D 1

¡
ch j

Phi C kh j h
i
¢

¡ La D Lb (19)

S®
Rh C I® R® C

nX

i D 1

¡
c® j P®i C k® j ®

i
¢

¡ Ma D 0 (20)

Considering the blast load Lb.¿/ as uniformly distributed in the
chordwise direction, no moment contribution Mb.¿ / is introduced
in Eq. (20).

Following the steps adopted for one DOF, applying a load de-
pendingon one frequency Lb D X1es1 t , and expressingthe plunging
and pitching displacements in terms of TFs as

h.t/ D X1 H h
1 .s1/es1t C X2

1 H h
2 .s1; s1/e2s1t C X 3

1 H h
3 .s1; s1; s1/e3s1t

(21)

®.t/ D X1 H ®
1 .s1/es1t C X 2

1 H ®
2 .s1; s1/e

2s1t C X 3
1 H ®

3 .s1; s1; s1/e3s1t

(22)

the relativekernels and the aeroelasticresponsescan be determined.
The aeroelastic governing system including the external exci-

tation (such as blast pressure signatures) can be expressed in the
Laplace transformed space as

s2 O» C Â® s2 O® C 2³h
N!
V

s O» C
³

N!
V

´2

O» C Á »

nl C 2

¹

µ
s O® C s2 O»

C s2

³
1
2

¡ a

´
O®
¶

8.s/ C 1
¹

s2. O» ¡ a O®/ C 1
¹

s O® D lb.s/ (23)

Fig. 2 Comparison of the � rst three aeroelastic kernels for pure plung-
ing motion. Representation for s1 = s2 = s3, that is, !1 = !2 = !3.
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³
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r 2
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³
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´
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¡
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2
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´
2
¹

1
r 2

®
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³
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´
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¶
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¡ 1
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³
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´
1
r 2

®

1

¹
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8

1
r 2

®

1

¹
s2 O® D 0

(24)

Herein .O¢/ D .¢/, and consequently O».s/ D [».t/] and O®.s/ D
[®.t/], whereas Á »

nl and Á ®
nl are nonlinear functions of »

and ® (and of their derivatives), respectively. Following the
same steps, applying the loads Lb.t/ D X1es1t C X2es2t and
Lb.t/ D X1es1 t C X2es2 t C X3es3 t , equating the terms in the forms
X1 X2e.s1 C s2 /t and X1 X2 X3e.s1 C s2 C s3/t , the expressions for the
second- and third-orderVolterra kernel in the Laplace-transformed
space can be obtained.

D. Generalization to Multiple-DOF Systems
The method shown for one- and two-DOF wing sections can

be extended to systems featuring multiple-DOF systems in general
and to a three-dimensional aircraft wing in particular. The method
of deriving the nth order nonlinear aeroelastic TFs is based on the
fact that when the aeroelasticsystem describedby the response y.t/
(expressedvia Volterra series) is excitedby a set of k unit amplitude
exponentials at the arbitrary frequencies s1; s2; : : : ; sk , the output
will contain exponential components of the form

y.t/ D
1X

n D 1

X

m

n!
m1!m2! : : : mk!

£ Hn.s1; s2; : : : sk / exp[.s1 C s2 C ¢ ¢ ¢ C sk/t ] (25)

where because si occurs in .s1; s2; : : : ; sk/ m i times, there are
n!=.m1!m2! : : : mk!/ identical terms; m under the summation

Magnitude: Hh
1 [!1][103], Hh

2 [!1; !2][103] Phase: Hh
1 [!1], Hh

2 [!1; !2][deg]

Magnitude: H®
1 [!1][103], H®

2 [!1; !2][103] Phase: H®
1 [!1], H®

2 [!1; !2][deg]

Fig. 3 First two aeroelastic kernels for plunging–pitching coupled motion (c®1 = 10 N/ms¡ 1; c®2 = 10 N/m2s ¡ 2; k®1 = 104 N/m; k®2 = 107 N/m2;
a = ¡ 0:2m; U 1 = 0:4UF ).

sign indicates that the sum includes all of the distinct vectors
.m1; m2; : : : ; mk / such thatX

i D 1

m i D n

The presenceof nonlinearitiescausesharmonicexcitationsandsums
of harmonics to appear in the response of the aeroelastic system.
Because of the nonlinear formulation, different frequencies can be
expected as well.

From an energy point of view, we can observe that H1.s1/ pro-
duces a single-frequencyoutput in response to the simple input es1 t .
However, because the system is nonlinear H2.s1; s2/ takes into ac-
count the terms that produce an output energy corresponding to
the sum of frequencies !1 C !2, or in other words to the input
e.s1 C s2 /t . Similarly, the third-order nonlinear aeroelastickernel will
inject a mix of three input frequencies into the total system out-
put (Figs. 2– 4). This is the great advantage of this methodology
over the other approaches based on the � rst-order FRF. In contrast
to these methodologies,Volterra’s series approach is able to capture
the transfer of energybetween frequencies,which is typical for non-
linear systems.

V. Results and Discussion
For numerical simulations, unless otherwise stated, the follow-

ing parameters were used: (m D 1 kg; b D 1 m; CL® D 2¼ ; ch1 D
10 N/ms¡1; ch2 D 10 N/m2s¡2; ch3 D 10 N/m3s¡3; kh1 D 104 N/m;
kh2 D 107 N/m2; kh3 D 108 N/m3; ½ D 1:225 kg/m3; U1 D 1 m/s).
For the two-dimensional wing section experiencing pure plunging
only, the � rst three aeroelastic kernels in magnitude and phase are
depicted in Fig. 2 as a function of the frequency, considering the
representation along the diagonal of the plane !1; !2, that is, for
! D !1 D !2 D !3. As is clearly seen, a reduced in� uence on the
response of the third kernel is experienced.

In Fig. 3 there are depicted the Volterra kernels for the wing sec-
tion featuring plunging and pitching DOFs. Also in this case the
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a) c)

b) d)

Fig. 4 Three-dimensional and contour plots of second-order aeroelastic kernel.

Fig. 5 Convergence study involving the � rst three kernels and comparison with the exact nonlinear aeroelastic response to a 1-cosine gust pulse, as
shown in the inset. Num. Int., Numerical integration.

plots include the magnitude and phase for the kernels in plunging
H h

i and pitching H ®
i , in which i identi� es the order of the ker-

nel. In Fig. 4 three-dimensional plots of the magnitude and phase
(Figs. 4a and 4c, respectively) of the second-orderkernel vs the two
frequencies!1 and !2 are provided.The contourplots (Figs. 4b and
4d, respectively) reveal the symmetry of this kernel with respect to
the leading diagonal represented by !1 D !2. To assess the versa-
tility and provide a validation of this methodology, a comparison
of the predictions of the aeroelastic response of a nonlinear one-

DOF wing section using three approximations is shown in Figs. 5
and 6. The excellent agreement of predictions demonstrates both
the accuracy of the aeroelastic model and also the power of the
methodology based on the Volterra series and indicial function ap-
proach. The � rst-, second-, and third-order approximations of the
aeroelasticresponse to a 1-cosinegust load and triangularblast load
are plotted for different parameters, along with the exact response
obtained via numerical integration. Both � gures reveal the rapid
convergence of the approximation. The same approach has been
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Fig. 6 Convergence study involving the � rst three kernels and comparison with the exact nonlinear aeroelastic response to a triangular blast load,
as shown in the inset. Num. Int., Numerical integration.

Fig.7 Convergencestudy involvingthe � rst three kernels andcompari-
sonwith the exact nonlinearaeroelastic response of the impulseresponse
described in Eq. (26) (k = 1; !0 = 2¼). Num. Int., Numerical integration.

applied to a nonlinear time-varyingsystem representedin Ref. 39 in
which a transient responseanalysisof a continuoussystem has been
addressed via functional techniques and multidimensionalLaplace
transformation.The impulse responseof the system, representedby
the differential equation

dc.t/

dt
C Ac.t/ C km.t/c.t/ C "c2.t/ D R±.t/ (26)

evaluatedwith the present analysis,coincideswith that shown in the
Ref. 39 in which the parameters in use are A D 1I R D 1I k D 1; 10I

Fig.8 Convergence study involvingthe � rst three kernels andcompari-
sonwith the exact nonlinearaeroelastic response of the impulseresponse
described in Eq. (26) (phase-space representation) (k = 10; !0 =20¼).

" D 1I m.t/ D sin.!0t/I !0 D 2¼; 20¼ . Figures7 and 8 show the ex-
cellent agreement of these two approaches. In Figs. 8, the phase
space of the two responses is compared. The results provided in
these � gures constitute a strong test of the speed of convergenceof
the present method.39;40 The coef� cients of the nonlinear equation
are not small, nor is the period of the time-varying parameter long
compared with the natural time constant of the system.

The third-order Volterra kernel in terms of its magnitude and
phase for the case in which !3 D !1 are depicted in a three-
dimensional plot in Figs. 9a and 9c, and the correspondingcontour
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a) c)

b) d)

Fig. 9 Three-dimensional and contour plots of third-order aeroelastic kernel.

Impulse response-� rst order kernel: linear response Impulse response-second order kernel

Impulse response-third order kernel Nonlinear impulse response

Fig. 10 Time history of the nonlinear aeroelastic response.
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plots are presented in Figs. 9b and 9d. The second- and third-order
Volterra kernels, in particular, and the nth order kernel, in general,
are the second-, third-, and nth-order TFs of the aeroelastic system,
where the point Hn.s1; : : : ; sn/ gives the magnitudeand phaseof the
selectedpower n outputcomponentat frequencyof !1 C ¢ ¢ ¢ C !n as
a resultof inputsinusoidsat frequencies!1; : : : ; !n . In this sensethe
high-orderVolterra kernels have been determined via multiple sine
input. For all of these reasons, these kernels will provide a direct

Fig. 11 In� uence of the linear stiffness coef� cient kh1 on the nonlinear
aeroelastic response; parameters as in Fig. 3.

Fig. 12 In� uence of the linear dampingcoef� cient ch1 on the nonlinear
aeroelastic response; parameters as in Fig. 3.

Fig. 13 In� uence of the � ight speed on the nonlinear aeroelastic response to a sonic boom (¿p = 15s; r = 2), as shown in the inset, evaluated with three
kernels; parameters as in Fig. 3.

physical interpretation of the high-order terms of the aeroelastic
system. From Fig. 4 it appears that the two peaks along the lead-
ing diagonal of H2 correspond to the resonance of the � rst kernels
!1 (see Fig. 2) and a resonance!1=2, meaning that the effect of the
quadraticnonlinearitieswill be a maximum for excitationfrequency
of !1 and !1=2. Consequently in Fig. 9, along the leading diagonal
there are three peaks (!1 , !1=2, and !1=3), implying that the effect
of the cubic nonlinearitieswill be maximum when the frequencyof
the sinusoidal input coincides with these frequencies. In addition,
as it appears clearly from Fig. 2, the magnitude of the second and
third kernels decreases rapidly (peak of H2 is 2.4 times smaller then
H1 and the peaks of H3 is 10 times smaller than H2), implying that
accurate results can be obtained with a few kernels only.

Determinationof the subcriticalaeroelasticresponse to any time-
dependent externally applied load is useful in the design of wing
structures and of the associated feedback control systems. This re-
sponse can be determined by use of the complex inversion formula
from the frequency domain to the time domain. Another idea is to
� nd the one-dimensional original response after the identi� cation
of all of the variables from the n-dimensional Laplace transformed
space.14;41 This case can be represented as

g.¿ / ´ hn.¿1; ¿2; : : : ¿n/j¿1 D ¿2 D ¢¢¢ D ¿n D ¿ (27)

Because hn D ¡1[Hn ], g.¿ / is obtained using G.s/ D [g.¿ /];
G.s/ can be calculated by means of an (n ¡ 1)-dimensional inver-
sion formula. The function g.¿ / has a correspondingLaplace trans-
form G.s/ (also called associated transform of Hn ) in the single-
dimensional Laplace-transformedspace.

The response in time can be obtained from H .s1; s2; : : : ; sn/
by determining G.s/ � rst and evaluating the one-dimensional in-
verseLaplace transformg.¿ /. This approachis called associationof
variable.14;41 Using this concept, the nonlinear aeroelastic response
in the time domainis depictedin Figs.10 for a one-DOF wing section
featuring the plunging DOF. In this � gure the � rst plot represents
the linear impulse response that corresponds to the convolution in-
tegral for the linear analysis. The other three plots represent the
components of the response caused by the second- and the third-
order kernels and the total response as a combination of the three
partial responses. The in� uence of the linear stiffness and of the
damping coef� cients on the response are displayed in Figs. 11 and
12. An increase of those coef� cients contributes to the decrease
of the magnitude of the kernels and, consequently,of the response
amplitude. Results not shown in this paper reveal that the geomet-
rical nonlinearities contribute to a limited growth of the de� ection
in the post� utter range and so to the avoidanceof the occurrenceof
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catastrophic failures.16 Figure 13 highlights the effect of the speed
parameter U1 on the wing sections subjected to sonic-boom pres-
sure signature as shown in the inset. Herein ¿p denotes the positive
phase duration of the pulse measured from the time of impact of
the structure. For r D 2 the N-shaped pulse degenerates into a sym-
metric sonic-boom pulse, in the sense that its positive phase has the
same characteristics as its negative one, and for r D 1 a triangular
pulse that corresponds to an explosivepulse is obtained. It becomes
apparent that the amplitude of the response time history (that have
been evaluated for practical use with three kernels) increases with
the increase of U1 . As it clearly appears, the plunging amplitudes
at zero � ight speed are slightly larger than those emerging at a small
� ight speed (U1 D 0:2UF /. This is caused by the fact that, in con-
trast to the former case when the aerodynamicdamping term is zero,
in the latter case the aerodynamic damping that is associated with
this � ight case contributestoward attenuatingthe oscillations.How-
ever, this trend is reversed when the � ight speed further increases,
and in such a case larger amplitudes are experienced toward the
� utter speed. Moreover, for the speed parameter U1 greater than
that corresponding to the � utter conditions (these ones determined
within the linearized aeroelastic system), as expected, the response
becomes unbounded.

VI. Conclusions
In this paper several issues related to the approach of the non-

linear aeroelastic response via Volterra series approach have been
presented. Following the same approach presented here, the char-
acter of the instability boundary, that is, benign or catastrophic,
can also be addressed. It was also shown that the method based on
Volterra series providesa uni� ed and ef� cient approachfor address-
ing nonlinear aeroelastic phenomena. Moreover, this approach can
be extended as to include also active control capabilities. Compar-
ison of results carried out via Volterra series in conjunction with
indicial functions approach and classical approach has been pro-
vided for the linearized model. For the fully nonlinear model, a
comparison with the exact numerical simulation of the nonlinear
aeroelastic response has been provided. The aerodynamic indicial
functions (for incompressible/compressible � ow� elds) considered
in conjunctionwith Volterra’s series approachcan be used as a pow-
erful analytical tool for developing unsteady aerodynamic models
and a uni� ed nonlinear aeroelastic model.
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